

R&D on Spoken Language Technologies at The Chinese University of Hong Kong 香港中文大學

P. C. Ching (程伯中)

Spoken Language Processing Group

Two Laboratories :

Speech Processing Lab (EE Dept)

Human-Computer Communications Lab
(SEEM Dept)

• The Team:

- 3 Faculties Helen Meng(蒙美玲), Tan Lee (李丹), and P.C. Ching (程伯中)
- 6 Research Staff
- 13 Graduate Students

• Research Directions:

Highly usable voice-enabled interface technologies

Ease of access: anyone, anywhere, anytime, any device

• Funding and Sponsors :

HK Government - RGC, ITF

Local Industry - *Group Sense, SmarTone, Reuters HK, TVB*

Collaborators/Sponsors - US NSF, JHU, PKU, CAS, Intel, Microsoft China, SpeechWorks, IVRS

Three Focal Areas

• Resources and Infrastructure:

Chinese Text Corpora, Lexicon, Pronunciation Dictionary, Speech Databases (Cantonese)

• Spoken Dialog Systems and Component Technologies :

LVCSR, NL Understanding, Dialog Modeling Speech Generation (CUFOREX, ISIS)

• Translingual Speech Retrieval:

Audio indexing, IR on Spoken Contents, Embedded Machine Translation (MEI)

Characteristics of Cantonese

a monosyllabic and tonal language :

homophone: (jyu4 予、如、魚、愚)

homograph: (行徑 hang4 ging3,行路 haang4 lau6, 銀行 ngan4 hong4,操行 cou1 hang6..)

- ambiguous word-boundary, gender, tense logic
- very colloquial:

存了『腌尖』, **鍾**意著『**單**吊西』、 **飲齋**啡、 食『多士』

Cantonese Spoken Language Databases

- * CUCorpora (1999) the first publicly available Cantonese microphone speech database
 - 150 speakers, 70 hr. studio recording
 - 16 KHz sampling, 16-bit resolution
 - a wide phonetic coverage
 - phonemic and orthographic transcription

CUSYL 1800 Cantonese tonal syllables

2M & 2F + pitch marks

1 CD

pitch marks CUDIGIT

Digit strings - length 1 to 14 50 M & 50 F speakers

2 CD

CUWORD 2527 polysyllabic words

13M & 15 F speakers

5 CD

CUCMD

100 navigation commands
50 M & 50 F speakers

1 CD

CUSENT

5719 sentences

40 M & 40 F

3 CD

http://dsp.ee.cuhk.edu.hk/speech/corpus.html

- * CUCall (2002) collection of telephone speech data over fixed-line and mobile networks
 - over 1000 speakers
 - 8 KHz sampling, 8-bit resolution (μ-law)
 - 200 hours of data, phonemically transcribed

Sentences

continuous Cantonese sentences based on CUSENT for phonetic coverage

Passages

Passages extracted from newspapers - capture long speech characteristics

Digit strings

randomly generated digit strings of length 1 to 16

Spontaneous conversation

spontaneous answers to prompted questions - capture speaking styles

Application specific words

local place names, command words, stock names, foreign currencies,

http://dsp.ee.cuhk.edu.hk/speech/cucall.html

Cantonese Text-to-Speech

- * CUTalk (2000) the first PSOLA-based Cantonese synthesizer
 - 1857 tonal syllable speech templates
 - cross-syllable co-articulation
 - manually labeled pitchmarks
 - over 90,000 words pronunciation dictionary
 - text segmentation by maximum matching
 - word-level duration and energy normalization
 - prosody modeling : duration, F0, intensity (focus, phrasing and final lengthening)

* CUVocal - the first corpus-based concatenative TTS for Cantonese

- handles mixed language with English text
- portable across Chinese dialects
- amendable to domain-optimization for enhanced naturalness in specific applications
- unit selection based on phonologicallymotivated distinctive features

CU Vocal: Air Travel Domain-Optimized

你於七月二十五日**訂購**了一張成人及三張兒童的 英國航空公司 單程商務客位機票航班編號係 BA375 將於當地時間十三時二分由紐約出發 預 計於當地時間十七時二十四分抵達大阪

ASR for Cantonese

- * Acoustic Model (HMM)
 - feature parameters : MFCC + energy, Δ, ΔΔ
 - training data : CUSENT, CUCALL
 - acoustic units: base syllable(BS), tonal syllable(TS), initial-final (IF), initial-tonal-final (ITF)
 - context independent/dependent models

syllable recognition accuracy

	BS	TS	IF	ITF
CI	56.13	52.25	62.05	64.99
	(638)	(1615)	(81)	(301)
BI				77.68
				(1993)
TRI			<i>79.47</i>	78.66
			(8458)	(45556)

decision tree based sharing

* Language Model

- LVCSR
 - word bigram, ~6,500 words lexicon
 - training text: 5 local newspapers over 1 year perplexity of the bigram is ~160
 - character accuracy ~83%
 - expanded lexicon of 20K words
- □ Domain-specific (stock/currency trading, air travel)
 - class-based bigram (~1,600 wd; 270 cl)
 - training data: from newspapers/magazines and collected conversational queries
 - character accuracy ~95%

* Search Algorithm

- time synchronous Viterbi search
- multiple layers of beam pruning: acoustic level, language level, cross-word context
- LM Lookahead: static and compressed
- exact heuristic for A* stack search to generate the true N-best list

Robustness: parallel model combination to remove additive noise, blind adaptive FRESH filtering to separate different speech sources

Speaker Adaptation: MLLR with confidence measure

Mixed Language Recognition

Spoken Language Understanding

- human-computer dialog on limited domain
- 3 core components : semantic parser, discourse analysis, dialog manager
- handcrafted grammar by experts (rule-based) on annotated corpus (data-driven)

Objectives of our recent work:

- reduce handcrafting grammar rules
- enhance portability across domains and languages
- improve efficiency in parsing

I. Semi-Automatic Grammar Induction

- agglomerative word clustering technique
- optional prior knowledge as catalyst
- manual refinement of induced grammar
- expedite grammar development
- reduce reliance on handcrafting grammar
 - annotating corpora
- semi-automatic approach enhances portability across domains / languages

Word Clustering

- Inspired by language model [McCandless 93]
- Unannotated training corpus
- Spatial clusters (SC) ⇒ semantic categories

$$Div(p_1||p_2) = \sum_{i=1}^{V} p_1(i) \frac{p_1(i)}{p_2(i)} + \sum_{i=1}^{V} p_2(i) \frac{p_2(i)}{p_1(i)}$$

$$Dist(e_1, e_2) = Div(p_1^{left}||p_2^{left}) + Div(p_1^{right}||p_2^{right})$$

Temporal clusters (TC) ⇒ phrasal structure

$$MI(e_1, e_2) = P(e_1, e_2) \log \frac{P(e_1|e_2)}{P(e_2)}$$

Alternates between SC and TC formation

Induced ATIS Grammar

```
SC4 --> december | february...
SC7 --> nashville | toronto | tampa ... (places)
SC24 --> serve | serves
SC28 --> monday | wednesday | thursday
TC39 --> first class
TC44 --> one way
TC145 --> flights from SC7 to SC7 (a phrase)
```

```
With prior knowledge injection
(seed categories)

SC2 --> atlanta | baltimore | boston... (i.e. city names)

SC3 --> monday | tuesday | wednesday... (i.e. days of the week)

SC15 --> from | departing from | leave from...

SC16 --> to | arriving to | arrive to...

TC38 --> flights SC15 SC2 SC16 SC2 on SC3 (i.e. a phrase)
```

Post-processing

- Insert meaningful nonterminal tags
 e.g., city_name --> nashville | toronto | tampa...
- Completing terminal set
 e.g., months of the year --> Jan | Feb .. | Dec.
- Merging

```
TC211 --> flights from SC7 to SC12
TC274 --> flights from SC7 to SC29
TC292 --> flights from SC12 to SC7
SC7, SC12, SC29 are all city names
```

Pruning

```
SC31 --> today | uses | TC81 (in the morning)...
SC32 --> either | or | travel | know | take...
SC45 --> airport | florida
SC69 --> TC81 (city_name to) | TC166 (denver to)...
```

Portability to Chinese

- Parallel Chinese corpus from ATIS-3
 - Cantonese colloquialisms

English: show me all united airlines first class flights

Chinese:

話我知所有聯合航空既頭等航班

English: show me all the northwest flights from new york to

milwaukee that leave at seven twenty a m

Chinese:

話俾我知所有係上畫七點廿分由紐約飛去密耳瓦基既航機

English: How many first class flights does united have today

Chinese:

今日有幾多班聯合航空既頭等航機起飛

Tokenization and clustering

```
SC<sub>1</sub> → 波班克 | 蒙特利爾 | 鹽湖城 (translation: burbank | montreal | salt lake city)

TC<sub>50</sub> → 米契爾 國際 機場 (translation: general mitchell international)

TC<sub>68</sub> → 單程航班 (translation: one way flight)
```

Word order differences

```
flight_number
e.g. "flight four one seven" 四一七航機
arrival_time
e.g. "arrive before five pm"下畫五點前到達
```

Evaluation Results

Error rate in semantic concepts

ATIS-3 Class A sentences	Error Rate from Induced Grammar G_{SA}	Error Rate from Handcrafted Grammar G_H
Training Set	6.9%	6.3%
1993 Test Set	16.1%	8.3%
1994 Test Set	17.1%	13.0%

Understanding using induced grammar

	Test 1993		Test 1994	
Understanding	G_{CSA}	G_{SA}	G_{CSA}	G_{SA}
Full	77.7%	80.4%	74.1%	76.8%
No	6.0%	3.1%	3.9%	1.4%

II. Lattice Parsing with Multiple Grammars

- Concerns in parsing natural language
 - efficiency (scalability)
 - ambiguity
 - robustness
- Grammar partitioning
 - reduce exponential growth of states in LR parsing
 - save time to generate parsing table
- Parser composition
 - integrate parsers with specialized grammars

Grammar Partitioning

- Properties of sub-grammars
 - modular, no overlap
 - union gives original rule set
 - each operates with a parser
 - interfaced by virtual terminals
 - ordered in levels
- Virtual terminal
 - non-terminal
 - output of a sub-grammar/parser
 - input of another sub-grammar/parser

G_{FLIGHT_MOD}

Parser Composition

- Cascading
 - bottom-up robust parsing
 - lattice with multiple granularity LMG

- adapt GLR parsers to process lattice
- virtual terminals added to LMG
- output parse forest

Parse Forest Output

Parser Statistics

ATIS-3 (English)

Grammar Statistics	No Partitioning	Partitioned Grammar
# of rules	1,650	1,818
# of virtual terminals	N/A	65
Total # states in parser	72,869	3,350

Translated ATIS-3 (Chinese)

Grammar Statistics	No Partitioning	Partitioned Grammar
# of rules	1,538	1,639
# of virtual terminals	N/A	63
Total # states in parser	29,734	3,896

Integration into a Dialog System

- ISIS (Intelligent Speech for Information Systems)
 - collaboration with Peking Uiversity
 - trilingual (Cantonese, Putonghua, English)
 - stocks domain
- NLU component
 - disambiguates numeric expressions in stocks domain
 - handles out-of-vocabulary words
- Adaptive learning, on line interaction interleaves with off-line delegation

ISIS: System Overview

CU FORE

Principal Investigator
Professor Helen Meng

Department of Systems Engineering and Engineering Management

Industrial Sponsors

IVRS
(INTERNATIONAL) LTD.

CU FOREX is a bilingual hotline for real-time foreign exchange enquiries. It integrates a plethora of speech recognition and language processing technologies to handle both Cantonese and English over the telephone.

The current exchange rate between HKD and USD is...

Engineering
Building's
Roof-top

ata and
formation

Broadcast

Network

Ho Sin Hang

寰之

之學

聲

Telephone: (852) 2603-7830 or (852) 2603-7884

http://www.se.cuhk.edu.hk/hccl/

Spoken Document Retrieval

Cross-lingual (English-Chinese)

- queries are translated from English to Chinese using phrase based approach
- Chinese queries with multiple translations are discounted in weighting
- the processed queries are used to retrieve the Mandarin spoken documents
- the retrieval process is susceptible to
 - speech recognition error
 - out-of-vocabulary error due to unmatched translated terms
- queries are expanded both before and after translation

- Pre-translation Query Expansion
 - based on a side corpus
 - include co-occurrence terms
 - select expansion terms according to TF/IDF
 - control the number of expanded terms
- Post-translation Query Expansion on target language
- Multi-scale audio indexing/Retrieval best word sequence + character and syllable bigram
- Document Expansion
 - based on an expansion set of documents
 - augment relevant terms to the document
 - cover synonyms by co-occurrence terms

Evaluation Results

- experiements based on Topic Detection and Tracking Corpora (TDT-2, TDT-3)
- Mean Average Precision of Document Retrieval

	No Query	With Query
	Expansion	Expansion
Word	0.4160	0.4637
Character Bigrams	0.4917	0.5255
Syllable Bigrams	0.4215	0.44 77

	Word	Character	Word+Character
TDT-2	0.4641	0.5163	0.5182
TDT-3	0.462	0.475	0.4815

Man-machine Communication using Natural Languages

possible but plenty of roadblocks and challenges

