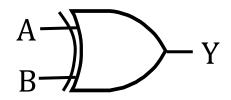
XOR論理ゲート

• 回路記号



• 論理式

$$Y = A \cdot \overline{B} + \overline{A} \cdot B = A \oplus B$$

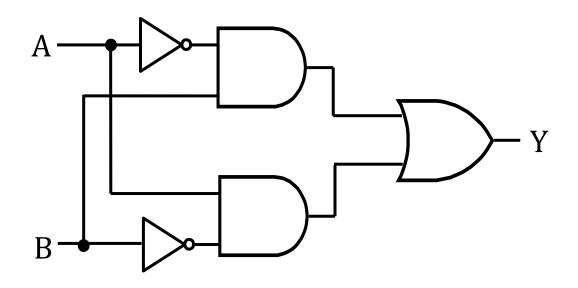
• 真理值表

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

AND,OR,NOTでどう実現できる?

・次のスライドでわかるが、構造がある程度複雑で 直感(真理値表から)では簡単に作成できるもので はない

AND,OR,NOTでどう実現できる?



$$Y = A \cdot \overline{B} + \overline{A} \cdot B = A \oplus B$$

演習08-1

- ・問題は次のスライド参照
- manaba, 10分
- 8点を4点に換算

真理值表一論理式一論理回路

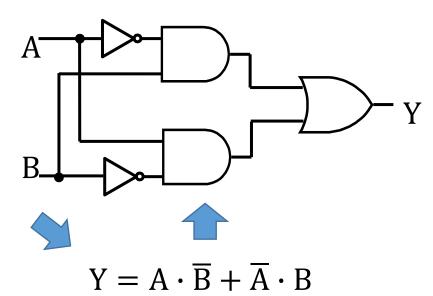
- ・以上から論理回路・論理式から真理値表を求めるのは簡単であることがわかる
- ・しかし逆、つまり真理値表から論理式・論理回路を もとめるのはそうではない

真理值表一論理式一論理回路

- 真理値表から論理式を「加法標準形」と呼ばれる 方法で求めれることができる
 - Y=1に着目して「最小項」を作成し、最小項を加算する (論理和にする)
 - 下記の例では、A・Bなどが項数が1で最小項となる (A+Bなら項数が2で最大項)

A	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

A	В	Y	最小項
0	0	0	
0	1	1	$\overline{A} \cdot B$
1	0	1	$A \cdot \overline{B}$
1	1	0	

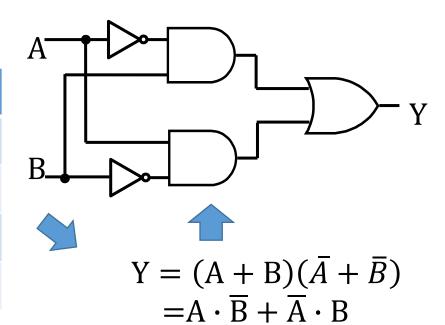


真理值表一論理式一論理回路

- 真理値表から論理式を「乗法標準形」と呼ばれる 方法で求めれることができる
 - Y=0に着目して「最大項」を作成し、最大項を論理積に する

A	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	Y	最大項
0	0	0	A + B
0	1	1	
1	0	1	
1	1	0	$\bar{A} + \bar{B}$

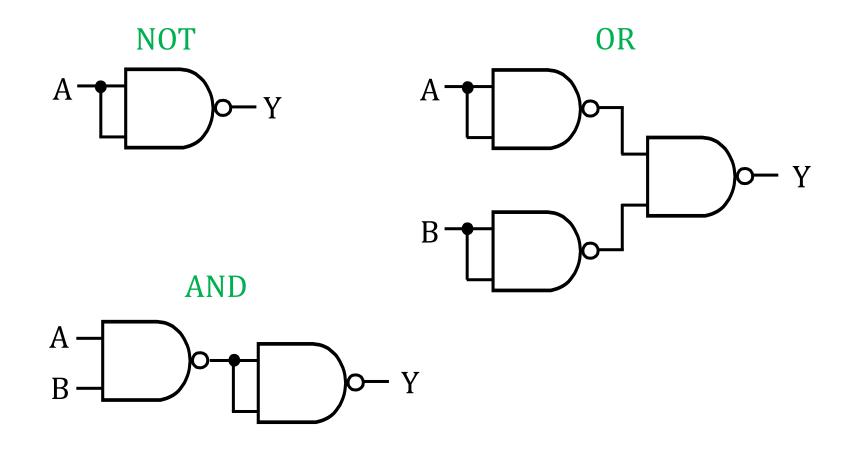


$Y = (A + B)(\bar{A} + \bar{B})$ に対応する XOR論理回路は?

論理ゲートNANDについて

- ・前回講義資料の参考ページ「論理ゲートの実装」 にもあるように、実用上ICの品種として論理ゲート NANDが多い
- ・実際、すべての論理ゲートをNANDゲートで実現で きる

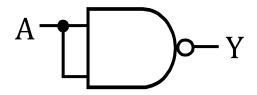
NANDですべての論理ゲートが 実現(作成)できる



これらって本当に正しいのか?

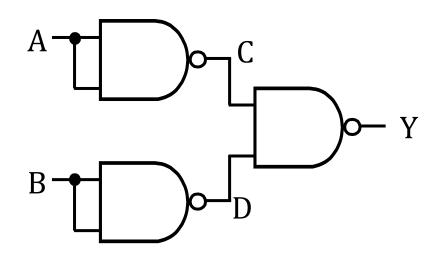
真理値表をもとめて確認することができる

演習:下記回路の真理値表をもとめ、 NOTであることを証明しなさい



A	A	Υ

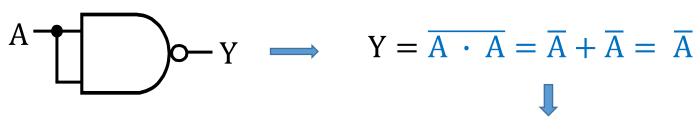
演習:下記回路の真理値表をもとめ、ORであることを証明しなさい



A	В	С	D	Υ
0	0			
0	1			
1	0			
1	1			

ほかに証明する方法はないか?

- 真理値表をもとめれば証明できるが、ほかに方法はないだろうか。
- ・回路→論理式→論理式の変形で証明することも 可能



論理式の変形

論理式の変形

論理式の変形(公理)

• 恒等則

$$A \cdot 1 = A, A + 0 = A$$

• 交換則

$$A \cdot B = B \cdot A$$
, $A + B = B + A$

• 相補則

$$A \cdot \overline{A} = 0$$
, $A + \overline{A} = 1$ (Aと \overline{A} が互いの補元)

• 結合則

$$(A \cdot B) \cdot C = A \cdot (B \cdot C), (A + B) + C = A + (B + C)$$

• 分配則

$$(1)(A \cdot B) + C = (A + C) \cdot (B + C)$$

$$②(A + B) \cdot C = (A \cdot C) + (B \cdot C)$$

分配則以外は自明。 分配則については C=0,1を代入して考え ればわかる

論理式の変形(定理)

• べき等則

$$A \cdot A = A$$
, $A + A = A$, $A + 1 = 1$, $A \cdot 0 = 0$

•二重否定

$$\overline{\overline{A}} = A$$

• 吸収則

$$A \cdot (A + B) = A, A + (A \cdot B) = A$$

 $A \cdot (\overline{A} + B) = A \cdot B, A + (\overline{A} \cdot B) = A + B$

ド・モルガンの法則

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

これら以外はほぼ自明(またはすぐ導出できる)。

乗法標準形で求めたXORの式変形の証明

・以下の式変形が成り立つことを論理式変形の公理・定理を使って証明しなさい

$$Y = (A + B) \cdot (\overline{A} + \overline{B}) = A \cdot \overline{B} + \overline{A} \cdot B$$

乗法標準形で求めたXORの式変 形の証明 ç

$$Y = (A + B) \cdot (\overline{A} + \overline{B})$$

分配則②など
=
$$(A + B)\bar{A} + (A+B)\bar{B} = B\bar{A} + A\bar{B}$$

注意:ここでは論理積の演算子「・」を省略している。 今後、混乱が生じない限り断りなく省略する場合が ある

演習

• 吸収則A・(A + B) = Aを論理式変形の公理・(それより前にある)定理を用いて証明しなさい

演習

 吸収則A + (Ā·B) = A + Bを論理式変形の公理・ (それより前にある)定理を用いて証明しなさい

演習

・以下のド・モルガンの法則①を真理値表で証明しなさい

ド・モルガンの法則
$$\overline{A \cdot B} = \overline{A} + \overline{B} \quad ... \quad 1$$

$$\overline{A + B} = \overline{A} \cdot \overline{B} \quad ... \quad 2$$

ド・モルガンの法則①の証明

• $\overline{A \cdot B} = \overline{A} + \overline{B}$ を証明するためには、 $A \cdot B$ が $\overline{A} + \overline{B}$ の補元であることを証明すればよい。つまり、

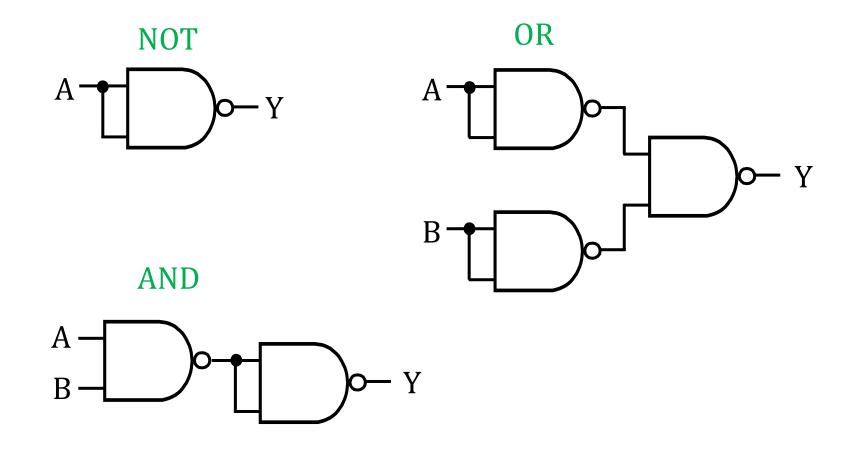
$$A \cdot B + (\overline{A} + \overline{B}) = 1$$
 を証明できればよい $(A \cdot B) \cdot (\overline{A} + \overline{B}) = 0$

以下省略。授業でノートを取ってください。

ド・モルガンの法則②の証明

• $\overline{A + B} = \overline{A} \cdot \overline{B}$ の証明はド・モルガンの法則①を利用すると簡単にできる

NANDですべての論理ゲートが 実現(作成)できる



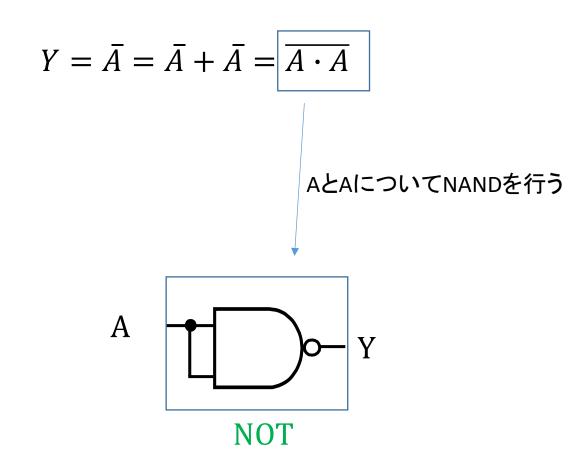
NOTはなぜNANDで作れるか?

$$Y = \bar{A}$$

NOTはなぜNANDで作れるか?

$$Y = \bar{A} = |\bar{A} + \bar{A}| = |\bar{A} + \bar{A}|$$
 ド・モルガンの法則① $|\bar{A} \cdot \bar{B}| = |\bar{A}| + |\bar{B}|$ べき等則

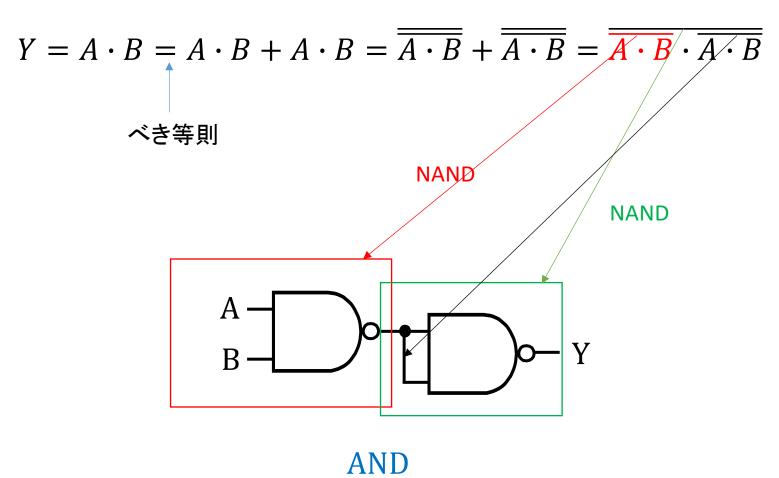
NOTはなぜNANDで作れるか?



ANDはなぜNANDで作れるか?

$$Y = A \cdot B$$

ANDはなぜNANDで作れるか?



演習08-2

- ORはなぜNANDで作れるか
- ・manabaレポート
- ・提出締め切り: 翌週火曜日12:30
- 5点