Natural Language Processing with Neural Networks

Qing Ma
Communications Research Laboratory
2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan
gmaQcrl.go.jp

Abstract

With learning-based natural language processing
(NLP) becoming the main-stream of NLP research,
neural networks (NNs), which are powerful paral-
lel distributed learning/processing machines, should
attract more attention from both NN and NLP re-
searchers and can play more important roles in many
areas of NLP. This paper tries to reveal the true
power of NNs for NLP applications as supervised or
unsupervised learning devices by concretely intro-
ducing three practical applications: part of speech
(POS) tagging, error detection in annotated corpo-
ra, and self-organization of semantic maps.

1 Introduction

Neural-network-based research in natural language
processing (NLP) [2, 4, 10, 18, 20, 21, 30, 31, 35,
40, 41, 42, 45] has a rather long history, extending
back to the early 1980s with papers on implementing
semantic networks [15], word-sense disambiguation
[5], anaphora resolution [36], and syntactic parsing
[43]. Compared to this long history, however, the
impact of neural networks (NNs) on the whole of
NLP research is still very limited, and the useful-
ness of NN has still not been widely or clearly rec-
ognized in the NLP field. One conceivable reason
is that the scale of the problems treated in most
NN-based NLP research so far has usually been too
small to demonstrate the real power of NNs for deal-
ing with practical NLP problems. Or, in some cas-
es, the research has focused mainly on modeling hu-
man language processing. Another possible reason
may be based on the old prejudice that NNs can-
not deal with real-world problems, which are usually
very large and very complex, due to the inherent NN
defect of nonconvergence.

The purpose of this paper is to try to reveal the
true power of NN and sweep away some misunder-
standings about its applicability to large-scale, com-
plex, real-word problems by concretely describing
three practical NLP applications: part of speech

(POS) tagging, error detection in annotated corpo-
ra, and self-organization of semantic maps. We hope
that readers may discover that a conventional per-
ceptron network that has inherent defect of noncon-
vergence is only one of various types of NN, and that
the min-max module (M?) neural networks [19] does
not suffer from this problem, even though it employs
perceptrons as basic modules.

The paper is organized as follows. In Section
2 we describe two kinds of NN-based systems, an
NN- and rule-based hybrid tagger [23] and anoth-
er based on M?® network [24], for POS tagging.
We show that these systems perform much better
than hidden Markov model (HMM), better than a
pure rule-based approach, and at a level compara-
ble to fashionable machine learning methods, such
as maximum entropy (ME) and support vector ma-
chine (SVM). Section 3 introduces a unique error-
detection method [25] using the M? network, which
is designed for on-line use. That is, detection can be
performed while the M3 network is learning a POS
tagging problem. This method is also cost-effective,
because the detection is performed not by scanning
each word of the whole corpus but by directly “fly-
ing at” areas that seem likely to have errors and
checking the words in those areas instead. Section
4 describes an NN-based approach to self-organizing
semantic maps for Chinese and Japanese, which are
visible representations in which Chinese or Japanese
words with similar meanings are placed at the same
or neighboring points, so that the distance between
the points represents the semantic similarity of the
words [26]. The effectiveness and essentialness of
the proposed NN-based method for creating seman-
tic maps are clarified by comparisons with a conven-
tional clustering technique and multivariate statisti-
cal analysis. Section 5 then gives a brief conclusion.

2 Part of Speech Tagging

2.1 Introduction

Words are often ambiguous in terms of their part
of speech (POS). POS tagging, which disambiguates

words in the context of a sentence, is an essential
technique used in NLP. This technique can also be
widely applied to many areas of information pro-
cessing including pre-processing for speech synthe-
sis, post-processing for OCR and speech recognition,
parsing, etc.

There have been many proposals for automatic
POS tagging systems that use various machine learn-
ing techniques (e.g., [1, 6, 29, 39]). We have also de-
veloped a neuro and rule-based hybrid tagger, which
reached a practical level of capability in terms of tag-
ging accuracy, requiring less training data than other
methods. To further improve our system’s tagging
accuracy, we can employ two approaches: one is to
increase the amount of training data, and the oth-
er is to improve the quality of the corpus used for
training. Because the hybrid tagger we proposed us-
es multilayer perceptrons, it suffers from problem of
an nonconvergent when we increase the amount of
training data. To overcome this inherent drawback,
we adopted the M3 neural network, which can solve
large and complex problems by decomposing them
into many smaller and simpler sub-problems. This
section describes the two kinds of POS tagging sys-
tems we have proposed: a hybrid tagger, and an M3
network tagger. In addition, for the second approach
to further improve our system’s tagging accuracy, a
POS error-detection technique has been developed
and is described in the next section.

2.2 POS tagging problem

Suppose there is a lexicon V = {w',w? .-+, w"},
in which the POSs that each word can serve as
are listed, and that there is a set of POSs, I' =
{r1,7%,---,77}. The POS tagging problem is thus
to find a string of POSs T' = mymo---75s (s € T,

it =1,---,s) with the following procedure ¢ when
sentence W = wjwsy---w; (w; € V, i =1,---,8) is
given:

p: Wt =1, (1)

where t is the position in the corpus of the word to
be tagged, and W? is a word sequence centered on
the target word w; with (I,r) words to the left and
right:

Wt:wt—l"'wt"'wt-{—r; (2)

where t — 1 > s;, t+71 < ss + s, ss is the position
of the first word of the sentence. Tagging can thus
be regarded as a classification problem by replacing
the POS with class and can therefore be handled
by using supervised neural networks trained with an
annotated corpus.

2.3 POS tagging with a hybrid tagger

Our hybrid system (Figure 1) consists of a neuro
tagger, which is used as an initial-state annotator,
and a rule-based corrector, which corrects the out-
puts of the neuro tagger. When a word sequence Wt
[see Eq. (2)] is given, the neuro tagger initially out-
puts a tagging result 7y (w;) for the target word w;.
The rule-based corrector then fine tunes the output
of the neuro tagger and gives the final tagging result
TR (wt)

Rule-Based
Corrector

Tn(Wt
W—> Neuro Tagger ()>

TR(VVI‘

Figure 1: Hybrid neuro and rule-based tagger.

2.3.1 Neuro tagger

The neuro tagger (Figure 2) consists of a three-layer
perceptron with elastic inputs.

Input X is constructed from word sequence W¢,
which is centered on target word w; and has length
l+1+47r:

X:(xt—ly"'amtv"'amt—i—r), (3)

provided that input length [+ 1 + r has elasticity,
as described at Sec. 2.5. When word w is given in
position p (p=t—1,---,t+r), element z, of input
X is a weighted pattern, defined as

Tp :gp'(ew17ew2a"':ew7): (4)

where g, is the information gain which can be ob-
tained by applying information theory (for details
see Refs. [27] and [34]), and 7 is the number of

Figure 2: Neuro tagger.

Table 1: Set of templates for transformation rules

Change tag 7° to tag 7° when:
(single input)
(input consists of a POS)
1. left (right) word is tagged .
2. second left (right) word is tagged .
3. third left (right) word is tagged .
(input consists of a word)
4. target word is w.
5. left (right) word is w.
6. second left (right) word is w.
(logical AND input of words)

7. target word is w; and left (right) word is ws.
8. left (right) word is w; and second left (right) word is ws.
9. left word is w1 and right word is ws.
(logical AND input of POS and words)
10. target word is wy and left (right) word is tagged 7.
11. left (right) word is wi and left (right) word is tagged 7.
12. target word is w1, left (right) word is w2, and left (right) word is tagged .

types of POSs. If w is a word that appears in the
training data, then each bit e,; can be obtained as
follows:

ewi = Prob(t'|w), (5)

where Prob(ri|w) is a prior probability of 7¢ that
the word w can take. This probability is estimated
from the training data:

i C(Tia U))
Prob(t*|w) = Clw) (6)
where C'(77, w) is the number of times both 7¢ and w
appear in the training data, and C(w) is the num-
ber of times w appears. If w does not appear in
the training data, then each bit e,; is obtained as
follows:

L if 7% is a candidate
Cwi = Tw . (7)
0 otherwise,

where 7,, is the number of POSs that the word w
can serve as. The output Y is defined as

Y = (y1,92," " ¥y)s (8)

provided that Y is decoded as

™~ (we) = { Unknown otherwise,
9)

where 7y (w;) is the tagging result obtained by the
neuro tagger.

More information is available for constructing the
input for words to the left of the target word, be-
cause they have already been tagged. Elastic inputs

are used in the neuro tagger so that the length of
the context is variable for tagging based on a longest
context priority. For details of the perceptron archi-
tecture, see Ref. [13], for example. The features of
the neuro tagger, i.e., the input elasticity and the
utilization of information from left words, are given
in detail in Refs. [27] and [28].

2.3.2 The rule-based corrector

Even when the POS of a word can be determined
with certainty by only the word on the left, for ex-
ample, the neuro tagger still tries to tag based on
the complete context. In other words, it is diffi-
cult for the neuro tagger to learn rules whose con-
ditional parts are constructed by only a single input
like (z, — Y'). Also, although lexical information
is very important in tagging, it is difficult for the
neuro tagger to use it, because doing so would make
the network enormous. That is, the neuro tagger
cannot acquire rules whose conditional parts consist
of lexical information. Furthermore, because of con-
vergence and over-training problems, it is both im-
possible and inadvisable to train neural nets to an
accuracy of 100%. The training should instead be
stopped at an appropriate level of accuracy. Thus,
a neural net may not acquire certain useful rules.
The transformation rule-based corrector makes up
for these crucial shortcomings. The rules are ac-
quired from a training corpus using a set of trans-
formation templates by transformation-based error-
driven learning [1]. The templates (Table 1) are con-
structed so as to supply only rules that the neuro
tagger has difficulty acquiring, i.e., rules with a sin-

MIN Y1
M 33

X — MIN — 7>
M2 38

Figure 3: The M3 Network: (a) the entire construction and (b) a close-up of module Mz s6.

gle input, with lexical information, and with logical
AND input of POSs and lexical information.! For
details on how an ordered list of transformation rules
can be acquired, see Ref. [23].

2.4 POS tagging with M3 networks

This section gives another approach, using an M3
network, to the POS tagging problem. The cen-
tral idea underlying the M? network is to decom-
pose large and complex problems into smaller and
simpler sub-problems, and then combine solutions to
the sub-problems to obtain the final solution to the
original problem. Since the M? network is problem-
dependent, in the sense that the problem must be de-
composed beforehand, we have to describe how the
POS tagging problem is decomposed and how an M3
network to deal with the problem is then construct-
ed using concrete data, a Thai language corpus, that
is actually used in POS tagging experiments.

2.4.1 Decomposition of POS tagging prob-
lem

The Thai corpus is composed of 10,452 Thai sen-
tences that have been randomly divided into two
sets: one with 8,322 sentences for training and the
other with 2,130 sentences for testing. The train-
ing set contains 124,331 words, of which 22,311 are
ambiguous; the testing set contains 34,544 words,
of which 6,717 are ambiguous, in terms of 38 kinds
of POSs used in the corpus.? For training the M3
network (as well as the perceptron in the hybrid tag-
ger), only the ambiguous words in the training set

LA number of additional experiments using various sets of
templates shown that this set is suitable.

2 Actually, a total of 47 kinds of POSs are defined in Thai
[3]; i.e., v = 47.

were used. By regarding a POS as a class, the POS
tagging problem in this case became a 38-class clas-
sification problem.

For the M? network to learn this 38-class problem,
it is first uniquely decomposed into (5) = 38 x 37
two-class problems. Some of the problems (those
with over 300 data in this case) are still too large, so
these problems are further decomposed by a random
method. As a result, the two-class problem 77 3, for
example, is decomposed into 50 sub-problems, while
problem T5 7 is not decomposed any further. In this
way, the original 38-class problem was decomposed
into a total of 3,893 smaller two-class problems. A
total of 3,893 modules are thus used in the M? net-
work to solve this tagging problem. For the details
of decomposing the POS tagging problem, see Ref.
[24].

2.4.2 The M® network

The M3 network that learns the POS tagging prob-
lem described in the previous section is construct-
ed by integrating modules, as shown in Figure 3(a),
where M; ; is used for learning two-class problem
T; ;. An individual module M;; (e.g., My 3) is fur-
ther constructed as shown in Figure 3(b) if the cor-
responding problem T;; (e.g., T s;, as mentioned in
the previous section) is further decomposed.

Input vector X is constructed by Eq. (3) - Eq.
(7), except that g, is set to 1 in Eq. (4) and the
output is not fed backed to the input for left words
that have already been tagged. Output Y is defined
by Eq. (8), provided that it is decoded as

T y; > 0.5 and
Tms(we) = y; < 0.5 for all j (§ # i)
Unknown otherwise,

(10)

where 7pr3(we) is the POS tagged to word w; as
obtained by the M2 network.

For the detailed architecture of the M? network,
see Ref. [19].

2.5 Experimental results

The data: The Thai corpus described in Sec. 2.4.1
was used in our experiments.

Hybrid tagger: The neuro tagger was constructed
with a three-layer perceptron whose input-middle-
output layers had L— % —7 units, respectively, where
L =yx(l+1+4r) and v = 47. (I,r) had the following
elasticity. In training, (I,r) was increased step by
step as (1,1) — (2,1) — (2,2) = (3,2) — (3,3) and
gradual training from a small to a large network was
performed. In tagging, on the other hand, (I,r) was
inversely reduced step by step as (3,3) — (3,2) —
(2,2) = (2,1) - (1,1) = (1,0) — (0,0) as needed,
provided that the number of units in the middle layer
was kept at the maximum value. Learning stopped
when the error reached an objective error®, which
was set to 0.005.

By regarding the neuro tagger as already having
high accuracy and using the rule-based corrector as
a fine tuner, the weight to control the strictness for
generating rules in the learning procedure was set to
a large value of 100. By applying the templates to
the training corpus, which had already been tagged
by the neuro tagger, we obtained an ordered list of
520 transformation rules.

The M? network: The length (I,7) of a word se-
quence given to the M3 network was set at (3,3). Al-
1 modules were basically constructed by three-layer
perceptrons whose input-middle-output layers had
L—2—1 units, respectively, where L = yx (I+1+4r) =
47 x 7 = 329. The modules stopped one round
of learning when either the error reached an objec-
tive value, set to 0.002, or the number of iterations
reached 2,000 epochs. For modules that could not
reach the objective error, up to three rounds of re-
learning was performed, with hidden layers of two
units each added in each new round until the objec-
tive error was reached.

The results: Table 2 lists the tagging accuracies of
various methods. From these results it is apparent
that the NN-based methods performed much better

s . DD D e]
Here, the error is defined as = =5

where D®) and O®)(k) are the desired and actual outputs
for the bth training data at iteration k, respectively, P is the
total number of training data, and o is the number of units
in the output.

Table 2: Tagging accuracy of various methods*
Method Accuracy (%)
Baseline 83.6

HMM 89.1
Rule-Based 93.5
ME 92.3**
SVM 93.9**
Three-Layer Perceptron 93.0
Elastic Neuro Tagger 94.4
M3 Network 94.2
Hybrid Tagger 95.5

*The accuracy was obtained by counting only the
ambiguous words.
**The accuracy was obtained without using lexical
information.

than the baseline model* and HMM. These meth-
ods also performed better than ME and SVM. A-
mong the NN-based approaches, the elastic neuro
tagger performed better than the traditional three-
layer perceptron in which g, was set to 1 in Eq. (4)
and the output was not fed back to the input for
left words that had already been tagged. The M3
network also performed better than the traditional
three-layer perceptron and was comparable to the
elastic neuro tagger. We also got the experimental
results that the M3 network hardly experienced any
over-training problems, as compared to the conven-
tional perceptron for learning a POS tagging prob-
lem. By examining the three factors that determine
the learning time, i.e., the number of training data,
the number of learning iterations, and the number of
parameters to be learned, we can see that the learn-
ing time of the M? network was more than 60 times
shorter than that of the elastic neuro tagger with
parallel computation. Without the use of parallel
computation, the learning time would have been n-
early the same for both. Of all the methods listed
in the table, the hybrid tagger had the highest ac-
curacy.

3 Error Detection in Annotat-
ed Corpus

3.1 Introduction

In Sec. 2.1, we mentioned that another approach to
improving a POS tagging system is to improve the

4The baseline model performs tagging without using con-
textual information; instead, it performs tagging with only
frequency information: the probability of POS that each word
can be.

quality of the manually annotated corpus used for
training. For this purpose, we need to use automatic
POS error-detection techniques.

POSs annotated manually in corpora may basical-
ly have three kinds of errors: simple mistakes (e.g.,
POS “Verb” is input as “Varb”), incorrect knowl-
edge (e.g., word fly is always tagged as “Verb”), and
inconsistencies (e.g., word like in the sentence “Time
flies like an arrow” is correctly tagged as “Preposi-
tion”, but in the sentence “The one like him is wel-
come” it is incorrectly tagged as “Verb”). Simple
mistake can be detected easily by referring to an
electronic dictionary. Mistakes of incorrect knowl-
edge, however, are hardly possible to detect by au-
tomatic methods. If we consider tagging words with
their correct POSs as a classification or input-output
mapping problem of mapping words under the con-
text of POSs, then inconsistencies can be considered
as sets of data with the same input but different out-
puts (classes). These sets of data can then be dealt
with by applying existing statistical methods or the
neural-network method described in this paper. Pre-
vious research on developing a detection technique
from statistical approaches [11, 33] was for off-line
use; that is, detection had to be performed before
learning. Off-line detection, however, is expensive
for very large corpora because detection must be
performed word by word through the whole corpus,
with no preprocessing to first focus on a few areas
where the words seem likely to have errors.

This section describes a novel error-detection
method [25] based on the M?® network. This method
is designed for on-line use, so that detection can be
performed while the M3 network is learning a POS
tagging problem. The method is also cost-effective,
because detection is performed not by scanning each
word of the whole corpus but by directly “flying at”
areas that seem likely to have errors and checking
the words in these areas instead.

3.2 New error-detection method

A total of 217 Japanese sentences were selected, each
with at least one error, from the Kyoto University
Corpus [22] for our computer experiment.> These
sentences included a total of 6,816 words with 2,410
distinct ones and 97 kinds of POS tags. Regarding
a POS as a class, the POS tagging problem in this
case became a 97-class classification problem.

For the M2 network to learn this 97-class problem,
it was decomposed into a total of 23,231 smaller two-
class problems. The number of training data for each

5The reason for using the Japanese corpus instead of the
Thai corpus is that we have insufficient knowledge of Thai to
judge the error-detection results.

two-class problem was no larger than 80. A total
of 23,231 modules were thus used for this learning
problem. The input and output vectors were con-
structed as follows:

X:(mt—l"'°7wt’.°°7wt+r)- (11)

Element x; is a binary-coded vector with w dimen-
sions,
Ty = (ewly"'76wu)a (12)

for encoding the target word. Element x,, (p # t) for
each contextual word is a binary-coded vector with
7 dimensions,

Tp = (eT17.'.7eTT)’ (13)

for encoding the POS with which the word has been
tagged.® The desired output is a binary-coded vec-
tor with 7 dimensions,

Y:(y17y2a"'ay7')7 (14)

for encoding the POS with which the target word
should be tagged.

Since an individual module in the M3 network on-
ly needs to learn a very small and simple two-class
problem, it can be constructed, for example, with
a very simple multilayer perceptron by only using
either no or a few hidden units. Thus, an individ-
ual module basically does not suffer from noncon-
vergence, as long as the learning data is correct. In
other words, if a module does not converge, it may
be concluded that it is learning a data set with some
inconsistent data: there is at least one pair of data,
(X;,Y;) and (X;,Y;) in the data set, such that

Xi=X;,Yi £Y; (i #7)- (15)

Thus, this type of error within an annotated cor-
pus that is being learned may be detected on-line by
simply picking out the unconvergent modules and
then determining if the data are in conflict with each
other. That is, we can use a simple program to find a
set of pairs, (X;,Y;) and (X;,Y;), from the data set
the module is learning that satisfy Eq. (15). Picking
out the unconvergent modules is clearly just like the
process of focusing on areas that seem likely to have
errors. Since the number of unconvergent modules
will be very limited compared to the number of con-
verged ones when a high-quality annotated corpus is
used, and because each module learns a very small

6This coding has been simplified compared to that used in
the POS tagging system described in 2.3.1. Such a simplifica-
tion, however, does not affect the error-detection mechanism
that determines patterns that are in conflict with each other.

Table 3: Experimental results for error detection

Total no. | No. of unconver- | No. of modules with | No. of conflicting data | No. of errors
of modules | gent modules conflicting data
23,231 82 81 97 94

data set, this on-line error-detection method has ex-
tremely good cost performance, which will increase
with the size of the corpus. By using such an effec-
tive on-line error detection method, the quality of
the corpus can be improved with a limited manual
intervention while it is being learned, and the new
data can immediately be used to retrain the uncon-
vergent modules.

3.3 Experimental results

Because there are 30,674 distinct words and 175
kinds of POSs in the whole corpus, the dimension-
s of the binary-coded vectors for word and POS, w
and 7, were set to 16 and 8, respectively. The length
(I,7) of a word sequence was set to (2,2). The num-
ber of units in the input layers of all modules was
therefore [(I +7) x 7]+ [1 X w] = 48, and all modules
were basically constructed from three-layer percep-
trons whose input-hidden-output layers had 48-2-1
units, respectively. The modules stopped one round
of learning when either the average-squared error
reached an objective value of 0.05, or the number
of iterations reached 5,000 epochs. For modules that
could not reach the objective error, up to five round-
s of relearning was performed, with hidden layers of
two units each added in each new round until the
objective error was reached.

Table 3 lists the experimental results. of the total
of 23,231 modules, 82 did not finally converge. Of
these 82 modules, 81 had exactly 97 pairs of con-
tradictory learning data, which at first reinforced
the hypothesis that the M3 network has basically no
problems of nonconvergence. By checking these 97
pairs of learning data, we found 94 of them included
true POS errors, so the precision rate reached nearly
97%. The remaining three pairs, on the other hand,
were cases of tagging the Japanese word “de (in, at,
on, ...)"” functioning as either a postpositional par-
ticle or copula in various contexts. The word “de”,
however, belongs to a very special case in which it is
not sufficient to use only an n-gram word and POS
information to determine its POS; instead, the gram-
mar of the whole sentence has to be considered. This
result indicates that our method could not only de-
tect POS errors with virtually a 100% precision rate,
but also discovered some knowledge that is useful for
NLP but would be difficult to find in general.

4 Self-organizing Semantic

Map

4.1 Introduction

Computing word similarity in meanings is an impor-
tant technique that can be applied in many natural
language processing fields, such as query expansion
in information retrieval [12] and reasoning in word
sense disambiguation [7, 16]. A number of corpus-
based statistical approaches have been used to com-
pute word similarity [8, 14, 32]. In practical appli-
cations, e.g., to find the optimal query expansion in
information retrieval, however, words must be fur-
ther sorted globally based on prior computations of
word similarity. For this, we are developing a tech-
nique that maps words from a very large lexicon into
a small semantic space, i.e., a visible representation
called a semantic map in which words with simi-
lar meanings are placed at the same or neighboring
points so that the distance between the points rep-
resents the semantic similarity of the words.

There have been several studies on developing
semantic maps for English [37] and also for Chi-
nese and Japanese [26]. In these studies, a self-
organizing neural network, called a self-organizing
map (SOM) [17], has been adopted as an unsuper-
vised learning machine. In these self-organizing En-
glish maps, however, the training data was gathered
from only three-word windows and then simply cod-
ed (i-e., transformed into vectors) with randomly
generated patterns. In studies to develop Chinese
and Japanese maps, on the other hand, co-occurrent
words, used as training data for the target words,
were gathered according to their grammatical rela-
tionships, i.e., adjective/noun—noun in Chinese and
adjective/nominal adjectival-noun in Japanese. The
target words were then coded, taking into accoun-
t the semantic similarity between words, which was
computed by using the co-occurrent words.

This section gives a brief description of the ap-
proach used for self-organizing Chinese and Japanese
semantic maps (for details see Ref. [26]). The map-
s created are evaluated numerically in terms of the
accuracy, recall, and F-measure, as well as by intu-
ition and comparisons with a clustering method and
multivariate statistical analysis.

000000 -
O0O000O0
O0000O0

000000

Figure 4: Two-dimensional SOM.

4.2 SOM

An SOM can be visualized as a two-dimensional ar-
ray (Figure 4) of nodes on which a high-dimensional
input vector can be mapped in an orderly manner
through a learning process. It is as if some mean-
ingful nonlinear coordinate system for different input
features is created over the network. Such a learn-
ing process is competitive and unsupervised and is
called a self-organizing process. For the details of
the SOM architecture, see Ref. [17].

The key point in constructing semantic map based
on SOM is how to code the words that we are plan-
ning to self-organize into the inputs x shown in Fig-
ure 4 based on word similarity computation, which
is described in the next section.

4.3 Data coding for self-organizing
semantic maps

Suppose there is a set of words w; (¢ = 1,---,n)
that we are planning to self-organize. Word w; can
be defined by a set of its co-occurrent words as

w; = {GY), ag)a Ty agi-)}a (16)
where ag-') is the jth co-occurrent word of w; and «;
is the number of co-occurrent words of w;.

Suppose we have a correlative matrix D whose
element d;; is the word similarity between words w;
and w;. We can then code word w; with the elements
in the i-th row of the correlative matrix D as

V(w;) = [di1, din, -+, din] - (17)
V(w;) € R™ is the input to the SOM. That is, the
role of the SOM is to manifest the semantic relation-
ships existing in such high-dimensional vectors and
represent them in a two-dimensional space. There-
fore, the method of computing the word similarity
d;; is a key point for coding.

4.3.1 Previous method

In the previous method, the word similarity d;; be-
tween words w; and w; is measured by

(i—cis)H(j—cij) e, 4 ;
dy=1 et BUPI g
0, otherwise,

where o; and o; are the numbers of the co-occurrent
words of w; and w;, respectively, and ¢;; is the num-
ber of co-occurrent words that w; and w; have in
common. The word similarity d;; is therefore the
normalized distance between w; and w; in the con-
text of the number of co-occurrent words that they
have in common. The smaller d;; is, the closer w;
and w; are in meaning.

4.3.2 TFIDF term-weighting method

TFIDF calculation is a well-known term-weighting
method [44] that has mainly been used to select
important keywords in document classification and
information retrieval [33, 38]. The notion of using
this calculation to weight the importance of each
co-occurrent word is based on the assumption that
for a given headword, only the words that frequent-
ly co-occur with it but rarely co-occur with other
headwords are really important. This approach is
also based on the idea that each headword can be
regarded as a document, and its co-occurrent words
as keywords.

In this method, the word similarity d;; between
word w; and w; is measured by

(Ti=Ti;)+(T; = Ti;)
d4 pp— Ti+Tj—Ti]'
'l] 07

where T; and T} are the expansions of the number-
s, a; and a;, of co-occurrent words for w; and w;,
respectively, and T;; is an expansion of the number,
cij, of co-occurrent words that w; and w; have in
common. They are calculated by

ifi] 19)

otherwise,

Cij

T;=) t and T =)), (20)
z=1

z=1

where ¢ and tg(fj)' are the TFIDF values of the co-
occurrent words at) (z = 1,---, ;) of w; and the co-
occurrent words a{ that w; and w; (x=1,---,¢i5)
have in common. These values can be calculated,

respectively, as
9 = ¢£(al), w;) - idf (@), (21)

and 3) ;
£ = tf(al) w;, w;) - idf (). (22)

Here, tf (a&i),wi) is the co-occurrence frequency of

(@)

co-occurrent word ay’ and word w;, tf (a(z'),wi,wj)

is the co-occurrence frequency of agf), w;, and wj,
and idf (ai’)) is the inverse frequency with which at)
appeares in all headwords:

df(a)) =log — - — +1, 23
) =log "+ (23)

where, n is the total number of headwords and
df(agf)) is the number of headwords co-occurring
with ag). . §

The TFIDF value ¢\ (including ¢%) is therefore
a weight reflecting the importance of co-occurrent
word a? for word w;. If we consider all co-occurrent
words to have the same importance to each head-
word, then Eq. (19) becomes the same as Eq. (18).

4.4 Experimental results

The data: For Chinese, to evaluate the experimen-
tal results more easily and objectively, the head-
words (a total of 85 nouns) were selected from six
categories in “The Contemporary Chinese Classified
Dictionary” [9]. As a new category, we also added
several Chinese family names that are not in the dic-
tionary but appear frequently in newspapers. The
co-occurent words were adjectives and nouns that,
together with the headnouns, formed noun phrases,
which were gathered by computer from eleven years
of “The People’s Daily.” The total number of co-
occurrent words was 69,030, and there were 22,118
different co-occurrent words.

For Japanese, we used noun phrases composed
of adjectives/nominal adjectivals and nouns, which
were gathered by computer from eight years of the
Mainichi Shinbun newspaper in order of the fre-
quency of co-occurring adjectives/nominal adjecti-
vals. There were 100 nouns, 33,870 co-occurrent
words, and 4,023 different co-occurrent words.

The SOM: We used an SOM of a 13x13 two-
dimensional array. The number of input dimensions,
n, was 85 for Chinese and 100 for Japanese. In the
ordering phase, the number of learning steps 7' was
set to 10,000, the initial value of the learning rate
a(0) was 0.1, and the initial radius of the neighbor-
hood ¢(0) was set to 13, a value equal to the diam-
eter of the SOM. In the fine adjustment phase, T
was set to 100,000, a(0) was 0.01, and ¢(0) was set
to 7. The initial reference vectors m;(0) consisted of
random values between 0 and 1.0.

The Results: Table 4 shows the results of numeri-
cal evaluation for the Chinese semantic map, ranked

Table 4: Comparative results of various coding
methods and clustering.

Precision Recall F-measure
Clustering™* 0.936 0.864 0.899
Entropy 0.925 0.874 0.899
Previous 0.926 0.90 0.913
Frequency 0.928 0.90 0.914
Clustering*? 0.95 0.896 0.922
TFIDF 0.944 0.907 0.925

*!Using the previous coding method
*2Using the TFIDF term-weighted coding method

in order of the F-measure. The results obtained with
two other coding methods based on cosine measures
are not included, because all the words in the map-
s using these two coding methods were merged to-
gether, so it does not make sense to evaluate them.
These results show that the proposed self-organizing
method performed better than the clustering tech-
nique in its classification ability, and the adaptation
of the TFIDF term-weighted coding method was def-
initely effective.

In Figure 5, (a) shows a semantic map of Chinese
nouns self-organized by the TFIDF term-weighted
coding method, while (b) shows that the nouns in
the map can be divided into eight groups according
to their similar meanings. Of the 85 nouns, only six
nouns were mapped in incorrect areas in the sense
that not only were they different from the definition
in the dictionary, but also they were also intuitive-
ly inconsistent. Even among these nouns, however,
some were mapped near the correct area or in lo-
cations that are intuitively reasonable. That is, the
self-organized map is basically consistent with the
definitions found in the Chinese dictionary. Natu-
rally, it is also intuitively consistent, in general.

A comparison of the self-organized map with the
classifications obtained by hierarchical clustering
shows that both methods produce similar results.
Moreover, as with the map, the 8 nouns were also
divided into exactly the same eight categories.

Principal component analysis of the same Chi-
nese data by using TFIDF term-weighted coding
showed that the cumulative coefficients of determi-
nation for the top two and ten principal components
were 8.29% and 24.53%, respectively. In general, if
the value is less than 80%, the multivariate data can-
not be compressed into a small number of principal
components. Therefore, it is difficult to construct
good semantic maps by applying multivariate sta-
tistical analysis. An experiment to plot the data by
using the first and second principal components was
performed, producing the map shown in Figure 6.
Almost all of the nouns were concentrated on the

business
=
Q
=
Q
(=
Q
ily
economy ame

(b)

Figure 5: Chinese semantic map based on TFIDF term-weighted coding method.

right side, and clearly this method cannot be used
to create a meaningful map.

It was not possible to numerically evalute the
Japanese maps because all the Japanese nouns were
gathered from newspapers by an automatic method
and their exact meanings were unknown. We can,
however, judge intuitively that the Japanese seman-
tic map (Figure 7) obtained by the TFIDF term-
weighting method was better than maps generated
with other coding methods, and that the classifica-
tion was not inferior to that obtained by hierarchical
clustering. In addition, principal component analy-
sis of the same data with TFIDF term-weighted cod-
ing showed that the cumulative coefficients of deter-
mination for the top two and ten principal compo-
nents were 7.317% and 22.679%, respectively. The
plotted results for the first and second principal com-
ponents showed that all words were merged togeth-
er, and this method also cannot be used to create a
meaningful Japanese map.

5 Conclusions

This paper has demonstrated that neural network-
s, as powerful supervised or unsupervised learning
devices, can be applied effectively to real NLP prob-
lems: POS tagging, error detection in annotated cor-
pus, and self-organization of semantic maps. For

POS tagging application, we have shown that the
NN-based approach performs much better than tra-
ditional statistical methods, such as HMM, and it
performs slightly better than fashionable machine
learning methods, such as ME and SVM. For the
error-detection task, we have proposed an on-line ap-
proach, so that detection can be performed while the
system is learning a problem. This approach is cost-
effective, because detection is performed not by s-
canning each word of the whole corpus but by direct-
ly “flying at” areas that seem likely to have errors
and checking the words in these areas instead. Last-
ly, self-organizing semantic maps are an NN-based
technique providing advanatges that currently can-
not be matched by existing machine learning meth-
ods, or by multivariate statistical analysis methods,
such as principal component analysis.

For our future work, the proposed tagging method
will be expanded for application to word-sense dis-
ambiguation, name-entity identification, and de-
pendent analysis, all of which can be regarded as
context-based tagging tasks. The proposed error-
detection method will be used to check the corre-
sponding corpora used in the various learning tasks
decribed above. Finally, the scale of semantic map-
s will be increased to a level suitable for practical
use and then applied to meaning-based information
retrieval tasks in Chinese and Japanese.

Figure 6: Chinese semantic map using principal
component analysis.

References

(1]

3]

[4]

[5]

E. Brill, “Transformation-based error-driven learn-
ing and natural language processing: a case study
in part-of-speech tagging,” Computational Linguis-
tics, Vol. 21, No. 4, pp. 543-565, 1994.

N. Chater and M. Christiansen, “Connectionism
and natural language processing,” in Language Pro-
cessing, S. Garrod and M. Pickering (Eds.), Psy-
chology Press, 1994.

T. Charoenporn, V. Sornlertlamvanich, and H. Isa-
hara, “Building a large Thai text corpus - part of
speech tagged corpus: ORCHID,” Proc. NLPRS’97,
pp. 509-512, 1997.

M. Christiansen and N. Chater, “Connectionist nat-
ural language processing: the state of the art,”
Special issue of Cogn Sci on Connectionsit Mod-
els of Human Language Processing: Progress and
Prospects, Cognitive Science 23, pp. 417-437, 1999.

G. Cottrell and S. Small, “A connectionist scheme
for modelling word sense disambiguation,” Cogni-
tion and Brain Theory, 6, 1983.

W. Daelemans, J. Zavrel, P. Berck, and S. Gillis,
“MBT: A memory-based part of speech tagger-
generator,” Proc. 4th Workshop on Very Large Cor-
pora, Copenhagen, Denmark, pp. 1-14, 1996.

I. Dagan, S. Marcus, and S. Markovitch, “Contex-
tual word similarrity and estimation from sparse da-
ta,” ACL’93, Columbus, Ohio, pp. 164-171, 1993.

I. Dagan, L. Pereira, L. Lee, “Similarity-based es-
timation of word cooccurrence probabilities,” A-
CL’94, Las Cruces, NM, pp. 272-278, 1994.

= .
i result/ action
X tate M5
&lA == §§
— A =
o [TE TR TE | 0 [Ws | o [HE
= = EA | #¥ 3z
B 5
R LS i
& 1 / Bl
R
1 . =
13 El] =0
emotio]
e Bakic
= HE pPoOll R
=) . N i
. Sl e
™ =
) i
ey
“ Al =)
= \ ‘ess1 Nt
= A
ETE Eﬁ
EED AR —
B B R [A W | -
= 1 e | 2 5 (72 IENIES ’?z_ﬁ
Fl— h 7¢
£ e
& person
8 . .
% time/location

Figure 7: Japanese semantic map based on TFIDF
term-weighted coding method.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. N. Dong, et al. (Eds.), Contemporary Chinese
Classified Dictionary, Han-Yu-Da-Ci-Dian Press,
1998.

M. Dyer, “Connectionist natural language process-
ing: a status report,” in Computational Architec-
tures Integrating Neural and Symbolic Processes, R.
Sun and L. Bookman (Eds.), Dordrecht: Kluwer,
1995.

E. Eskin, “Detecting errors within a corpus using
anomaly detection,” Proc. NAACL’2000, Seattle,
pp. 148-153, 2000.

William B. Frakes and R. Baeza-Yates (Eds.): In-
formation retrieval: data structures & algorithms,
New Jersey, Prentice-Hall, 1992.

S. Haykin, Neural Networks, 2nd Edition, Prentice
Hall, 1999.

D. Hindle, “Noun classification from predicate ar-
gument structures,” ACL’90, Pittsburgh, PA, pp.
268-275, 1990.

G. Hinton, “Implementing semantic networks in
parallel hardwrae,” in Parallel Models of Associa-
tive Memory, G. Hinton and J. Anderson (Eds.),
Lawrence Erlbaum, 1981.

Y. Karov and S. Edelman, “Learning similarity-
based word sense disambiguation from sparse data,”
Proc. the Fourth Workshop on Very Large Corpora,
Copenhagen, pp. 42-55, 1996.

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

T. Kohonen, Self-organization and associative mem-
ory, Springer Series in Information Science, Vol. 8,
Springer, 1984.

J. Levy, D. Bairaktaris, J. A. Bullinaria, and P.
Cairns (Eds.), “Connectionist Models of Memory
& Language,” UCL Press, 1995.

B. L. Lu and M. Ito, “Task decomposition and mod-
ule combination based on class relations: a modu-
lar neural network for pattern classification,” IEEE
Trans. Neural Networks, Vol. 10, No. 5, pp.1244-
1256, 1999.

H. Isahara and Q. Ma (Eds.), Proceedings of the
First Workshop on Natural Language Processing
and Neural Networks (NLPNN’99), 1999.

H. Isahara and Q. Ma (Eds.), Proceedings of the
Second Workshop on Natural Language Processing
and Neural Networks (NLPNN’2001), 2001.

S. Kurohashi and M. Nagao, “Kyoto University text
corpus project,” Proc. 3rd Annual Meeting of the
Assoctation for Natural Language Processing, pp.
115-118, 1997 (in Japanese).

Q. Ma, K. Uchimoto, M. Murata, and H. Isahara,
“Hybrid neuro and rule-based part of speech tagger-
s,” Proc. COLING’2000, Saarbriicken, pp. 509-515,
2000.

Q. Ma, B. L. Lu, H. Isahara, and M. Ichikawa, “Part
of Speech Tagging with Min-Max Modular Neural
Networks,” Systems and Computers in Japan, Vol.
33, No. 7, pp. 30-39, 2002.

Q. Ma, B. L. Lu, M. Murata, M. Ichikawa, and H.
Isahara, “On-line error detection of annotated cor-
pus using modular neural networks,” Artificial Neu-
ral Networks - ICANN2001, LNCS 2130, G. Dorffn-
er, H. Bischof, K. Hornik (Eds.), Springer, pp. 1185-
1192, 2001.

Q. Ma, M. Zhang, M. Murata, M. Zhou, and H.
Isahara, “Self-Organizing Chinese and Japanese Se-
mantic Maps,” Proc. COLING’2002, Taiwan, Au-
gust, pp. 605-611, 2002.

Q. Ma and H. Isahara, “A multi-neuro tagger us-
ing variable lengths of contexts,” Proc. COLING-
ACL’98, Montreal, pp. 802-806, 1998.

Q. Ma, K. Uchimoto, M. Murata, and H. Isahara,
“Elastic neural networks for part of speech tagging,”
Proc. IJCNN’99, Washington, DC., pp. 2991-2996,
1999.

B. Merialdo, “Tagging English text with a proba-
bilistic model,” Computational Linguistics, Vol. 20,
No. 2, pp. 155-171, 1994.

R. Miikulainen (Ed.), “Subsymbolic Natural Lan-
guage Processing,” The MIT Press, 1993.

H. Moisl, “NLP Based on Artificial Neural Network-
s: Introduction,” in Handbook of Natural Language
Processing, R. Dale, H. Moisl, and H. Somers (Ed-
s.), Marcel Dekker Inc., 2000.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[45]

S. Mori and M. Nagao, “A stochastic language mod-
el using dependency and its improvement by word
clustering,” COLING-ACL’98, Vol. 2, pp. 898-904,
1998.

M. Murata, Q. Ma, K. Uchimoto, H. Ozaku, M.
Utiyama, and H. Isahara, “Japanese probabilistic
information retrieval using location and category
information,” TRAL’2000, pp. 81-88, Hong Kong,
2000.

J. Quinlan, C4.5: Programs for Machine Learning,
San Mateo, CA: Morgan Kaufmann, 1993.

R. Reilly and N. Sharkey (Eds.), “A connectionist
Approaches to Natural Language Processing,” Hill-
side, NJ: Lawrence Erlbaum, 1992.

R. Reilly, “A connectionist model of some aspects of
anaphor resolution,” Proceedings of the Tenth An-
nual Conference on Computational Linguistics (A-
CL’84), 1984.

H. Ritter and T. Kohonen, “Self-organizing seman-
tic maps,” Biological Cybernetics, 61, pp. 241-254,
1989.

S. E. Robertson and S. Walker, “Some simple ef-
fective approximations to the 2-Poisson model for
probabilistic weighted retrieval,” ACM SIGIR’94,
Dublin, Ireland, 1994.

H. Schmid, “Part-of-speech tagging with neural net-
works,” Proc. COLING’94, Kyoto, Japan, pp. 172-
176, 1994.

B. Selman, “Connectionist systems for natural lan-
guage understanding,” Artificial Intelligence Re-
view, 3, pp- 23-31, 1989.

N. Sharkey (Ed.), “Connectionist Natural Language
Processing,” Kluwer, 1992.

N. Sharkey, “Connectionist science and natural lan-
guage: an emerging discipline,” Connectionist Sci-
ence, No. 2, 1990.

S. Small, G. Cottrell, L. Shastri, “Towards connec-
tionist parsing,” Proceedings of the National Con-
ference on Artificial Intelligence, 1982.

K. Sparck-Jones, “A statistical interpretation of ter-
m specificity and its application in retrieval,” Jour-
nal of Documentation, Vol. 28, No. 1, pp. 11-21,
1972.

S. Wermter, E. Riloff, and G. Scheler (Eds.), “Con-
nectionist, Statistical, and Symbolic Approaches
to Learning for Natural Language Processing,”
Springer, 1996.

